Building Resilience to a Changing Climate: A Technical Workshop in Water Utility Decision Support and Adaptation

Water Utility Climate Adaptation and Resilience Planning: Some Guiding Principles

Joel Smith

The Challenge of Adaptation to Climate Change

- We cannot adapt to a specific forecast of future climate
 - At best we know the direction of change of key variables
 - Some key aspects are uncertain
- Challenge is how to make decisions about investments and other decisions with long lifetimes in light of the uncertainties?
- This situation is not unique to climate change adaptation
- There is a path forward!

Some Desirable Attributes of Adaptation

- Flexibility
 - The adaptation can accommodate different conditions by adjusting
- Robustness
 - The adaptation can withstand widely varying conditions
- Resilience
 - Classic definition concerns capacity to recover from shocks
 - In context of climate change has been used to also include withstanding shocks
- The terms are often used interchangeably in the climate change context

Two Guiding Principles for Adaptation

- Make decisions that work or function over a wide range of possible conditions; what is desired is:
 - Flexibility
 - Robustness
 - Resilience
- Consider Economics
 - Basically, benefits should exceed costs
 - Complicated when benefits (avoided impacts) may not happen or be much larger decades into the future
 - Discounting do not spend **a lot** now to avoid risks many years from now

Other Approaches to Adaptation

- Win win
 - Aka "No Regrets."
 - Look for adaptations that can be justified without consideration of climate change but help adapt to changing climate
- "Low Regrets"
 - Relatively small investments that provide some degree of adaptation

Adaptation Examples that Satisfy These Principles

- Incremental investments
 - Low cost adjustments to infrastructure
 - Can buy additional protection now and into the future
- Maintain options
 - Buy land on which can build infrastructure in the future
- Diverse portfolio of options (for example, supply)
- Use resilient or flexible management systems
 - Water markets are responsive to changing conditions

Transformative Adaptation

- Previous types of adaptation try to keep systems functioning as they are
- May not work over long run
- In many cases more "transformative" changes are needed
 - Relocation
 - Change in livelihood
 - Change in behavior
- Transformation can be politically more challenging

Isle de Jean Charles, Louisiana

How Do We Assess Adaptation Options?

Two basic approaches:

- 1. Traditional assessment approaches
 - Often used to help identify an optimal solution
- 2. Deep Uncertainty approaches
 - Recognize "deep uncertainty" is part of problem and try to identify adaptations that can work across an array of possible outcomes

Traditional Assessment Approaches

Optimization Approaches

- 1. Benefit-Cost Analysis (BCA) King of traditional approaches
 - Express all benefits and costs in common unit, typically money
 - · Seek to maximize
 - Net Benefits
 - Benefit cost ratio
- 2. Cost-effectiveness
 - Seek the least costly way to achieve a common outcome
- 3. Multi-criteria assessment
 - It is typically applied where different metrics are used
- 4. Triple Bottom Line (TBL) splits out financial, social, and environmental benefits
 - TBL can be used in the above approaches

Traditional approaches work best when uncertainties are well-characterized

• Can also be applied when they are not; for example, for individual scenarios

Challenge of Applying BCA to Climate Change

- Probabilities of outcomes are not known
 - There are no reliable probabilities on GHG emissions
 - Challenging with regional climate change
- Timing of impacts
 - How to assess risks to life and limb over generations
 - Property is more straightforward but even that has challenges

Cost to adapt	Adaptation Benefits		
\$\$	<	\$\$\$\$\$	\bigcirc
\$\$\$\$	>	\$\$\$	
\$\$\$	=	\$\$\$?

Deep Uncertainty

- Recognize climate change cannot be predicted – some uncertainties remain
- Philosophies
 - Risk Management
 - Adaptive Management
- Types of Adaptation
 - No Regrets
 - Low Regrets
 - Incremental Adaptation

Philosophy: Risk Management

of outcomes

Philosophy: Adaptive Management

- Recognizes that we can make adjustments as conditions change
- Design systems/decisions so future conditions can be incorporated
 - Option to use land for investment in future such as a reservoir
- Examples:
 - Thames River barrier to protect London from storm surges over rest of century
 - MWD organized near-term investments in local supplies expecting some will need to expand and some be contracted as demand, regulations, climate, another factors change
- ASCE recommends adaptive management approach be applied

Other Key Factors Will Change And Should be Considered

- Population
- Income
- Technology
- Preferences/Culture

Key point is not to project these but understand how change in these and other factors can change vulnerability of a system to climate

How Precise Do We Need to Be in Our Projections?

Adaptations Often Incorporate Ranges or are Incremental

- Culverts can accommodate a wide range of flow and come in incremental diameters from 6" to 1'
- Decisions on sea level rise and flooding such as freeboard are often made in 1' increments

Before You Jump In – Clearly Articulate...

- What is your endgame? What question(s) do you want to answer e.g., what variables, levels of confidence
- How will you get there?
 - Method simple, sophisticated
 - Data type, scale, magnitude of change, level of uncertainty
 - \circ Tools current, new?
- Will it be useful?
- New science?
- Messaging internal, external

Key Takeaways

- The challenge of anticipating climate change is making decisions in light of uncertainty
 - Note: that is the challenge of anticipating any future change
- Uncertainty approaches are better suited to identify and assess options for anticipation of climate change
 - Adaptive management, risk management
 - No regrets, low regrets
 - Incremental, modular (scalable), diversification
 - May need to transform systems.
- Other factors besides climate are also changing and can be relevant
- You need to take an active role in decision making process
 - Tell the scientists what information you need