Water Utility Climate Adaptation and Resilience Planning: Some Guiding Principles

Joel Smith
The Challenge of Adaptation to Climate Change

• We cannot adapt to a specific forecast of future climate
 • At best we know the direction of change of key variables
 • Some key aspects are uncertain

• Challenge is how to make decisions about investments and other decisions with long lifetimes in light of the uncertainties?

• This situation is not unique to climate change adaptation

• There is a path forward!
Some Desirable Attributes of Adaptation

• Flexibility
 • The adaptation can accommodate different conditions by adjusting

• Robustness
 • The adaptation can withstand widely varying conditions

• Resilience
 • Classic definition concerns capacity to recover from shocks
 • In context of climate change has been used to also include withstanding shocks

• The terms are often used interchangeably in the climate change context
Two Guiding Principles for Adaptation

• Make decisions that work or function over a wide range of possible conditions; what is desired is:
 • Flexibility
 • Robustness
 • Resilience

• Consider Economics
 • Basically, benefits should exceed costs
 • Complicated when benefits (avoided impacts) may not happen or be much larger decades into the future
 • Discounting – do not spend a lot now to avoid risks many years from now
Other Approaches to Adaptation

• Win win
 • Aka “No Regrets.”
 • Look for adaptations that can be justified without consideration of climate change but help adapt to changing climate

• “Low Regrets”
 • Relatively small investments that provide some degree of adaptation
Adaptation Examples that Satisfy These Principles

• Incremental investments
 • Low cost adjustments to infrastructure
 • Can buy additional protection now and into the future

• Maintain options
 • Buy land on which can build infrastructure in the future

• Diverse portfolio of options (for example, supply)

• Use resilient or flexible management systems
 • Water markets are responsive to changing conditions
Transformative Adaptation

• Previous types of adaptation try to keep systems functioning as they are
 • May not work over long run
• In many cases more “transformative” changes are needed
 • Relocation
 • Change in livelihood
 • Change in behavior
• Transformation can be politically more challenging

Isle de Jean Charles, Louisiana
How Do We Assess Adaptation Options?

Two basic approaches:

1. Traditional assessment approaches
 • Often used to help identify an optimal solution

2. Deep Uncertainty approaches
 • Recognize “deep uncertainty” is part of problem and try to identify adaptations that can work across an array of possible outcomes
Traditional Assessment Approaches

Optimization Approaches

1. Benefit-Cost Analysis (BCA) - King of traditional approaches
 • Express all benefits and costs in common unit, typically money
 • Seek to maximize
 • Net Benefits
 • Benefit cost ratio

2. Cost-effectiveness
 • Seek the least costly way to achieve a common outcome

3. Multi-criteria assessment
 • It is typically applied where different metrics are used

4. Triple Bottom Line (TBL) splits out financial, social, and environmental benefits
 • TBL can be used in the above approaches

Traditional approaches work best when uncertainties are well-characterized
 • Can also be applied when they are not; for example, for individual scenarios
Challenge of Applying BCA to Climate Change

- Probabilities of outcomes are not known
 - There are no reliable probabilities on GHG emissions
 - Challenging with regional climate change
- Timing of impacts
 - How to assess risks to life and limb over generations
 - Property is more straightforward but even that has challenges

<table>
<thead>
<tr>
<th>Cost to adapt</th>
<th>Adaptation Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$</td>
<td>$$$$$$$ ✔</td>
</tr>
<tr>
<td>$$$$$$$</td>
<td>$$$ ✗</td>
</tr>
<tr>
<td>$$$</td>
<td>$$$?</td>
</tr>
</tbody>
</table>
Deep Uncertainty

• Recognize climate change cannot be predicted – some uncertainties remain

• Philosophies
 • Risk Management
 • Adaptive Management

• Types of Adaptation
 • No Regrets
 • Low Regrets
 • Incremental Adaptation
Consider likelihood and consequence of outcomes

Source: Major and O'Grady, 2010
Philosophy: Adaptive Management

• Recognizes that we can make adjustments as conditions change
• Design systems/decisions so future conditions can be incorporated
 • Option to use land for investment in future such as a reservoir
• Examples:
 • Thames River barrier to protect London from storm surges over rest of century
 • MWD organized near-term investments in local supplies expecting some will need to expand and some be contracted as demand, regulations, climate, another factors change
• ASCE recommends adaptive management approach be applied
Other Key Factors Will Change And Should be Considered

- Population
- Income
- Technology
- Preferences/Culture

Key point is not to project these but understand how change in these and other factors can change vulnerability of a system to climate
How Precise Do We Need to Be in Our Projections?

Adaptations Often Incorporate Ranges or are Incremental

• Culverts can accommodate a wide range of flow and come in incremental diameters from 6” to 1’

• Decisions on sea level rise and flooding such as freeboard are often made in 1’ increments
Before You Jump In – Clearly Articulate…

● What is your endgame? What question(s) do you want to answer e.g., what variables, levels of confidence

● How will you get there?
 ○ Method – simple, sophisticated
 ○ Data – type, scale, magnitude of change, level of uncertainty
 ○ Tools – current, new?

● Will it be useful?

● New science?

● Messaging – internal, external

Source: L. Kaatz, Denver Water
Key Takeaways

• The challenge of anticipating climate change is making decisions in light of uncertainty
 • Note: that is the challenge of anticipating any future change
• Uncertainty approaches are better suited to identify and assess options for anticipation of climate change
 • Adaptive management, risk management
 • No regrets, low regrets
 • Incremental, modular (scalable), diversification
 • May need to transform systems.
• Other factors besides climate are also changing and can be relevant
• You need to take an active role in decision making process
 • Tell the scientists what information you need