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GLOBAL CLIMATE PROJECTIONS ARE OFTEN DOWNSCALED TO EVALUATE LOCAL HYDROLOGY, AND THAT PROCESS 
CAN SIGNIFICANTLY CHANGE THE CLIMATE SIGNAL BEING EVALUATED.  DYNAMICAL DOWNSCALING METHODS 
BETTER REFLECT PHYSICAL PROCESSES, AND SPATIAL/TEMPORAL CLIMATOLOGY EXPECTED IN THE WESTERN U.S. 
 
INTRODUCTION  
Global climate model projections form the basis of our understanding of future changes in climate.  
However, these climate models have significant biases and fail to resolve features necessary to make 
informed decisions in specific basins. When compared to observational datasets (Figure 1) global models 
do not resolve orographic precipitation, have large biases across the domain, and have too coarse a 
spatial resolution. As a result, most applications rely on statistical or dynamical downscaling methods to 
represent the characteristics of climate that are important for specific basins.  
 
There are a wide variety of downscaling methods in use, and while most reproduce the historical climate 
accurately, there can be significant differences in the climate change (e.g. precipitation and temperature 
change) projected by different methods. This document aims to highlight some differences between 
three downscaling methods: the Intermediate Complexity Atmospheric Research model (ICAR: Gutmann 
et al., 2016), the LOcally Constructed Analog method (LOCA: Pierce et al., 2014), and the Bias Corrected 
Spatial Disaggregation method (BCSD: Wood et al., 2002).  
 

 
DOWNSCALING METHODS 
The downscaling methods shown here include two widely used statistical downscaling methods and a 
quasi-dynamical downscaling method.  The two statistical downscaling methods include the first widely 

 
Figure 1. Precipitation across the Western US as represented in two typical global climate models (left, center) 
and in an observation-based dataset (right). 
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used downscaling method for water resource applications, BCSD, and the method used in the most 
recent National Climate Assessment (NCA5), LOCA.  The quasi-dynamical method reviewed here is the 
ICAR model.  All three methods have been applied to eight global climate models (GCMs) from the 
Coupled Model Intercomparison Project phase 5 (CMIP5): CanESM2, CCSM4, CNRM-CM5,CMCC-CM, 
GFDL-CM3, HadGEM2-ES, MRI-CGCM3, and MIROC5.  Climate change maps shown here were computed 
between the periods 2070-2100 and 1975-2005 using the Representative Concentration Pathway (RCP) 
8.5 emissions scenario. For comparison, we also show results from a sensitivity experiment performed 
with one of the most physically complete atmospheric models, the Weather Research and Forecasting 
model (WRF: Skamarock and Klemp, 2008). The WRF model is too computationally expensive to perform 
the same direct downscaling, but it was used in an idealized experiment to represent the average climate 
change signal across 19 GCMs from CMIP5 for the same emissions scenario and time periods (Liu et al., 
2017). 
 
PRECIPITATION DIFFERENCES 
Precipitation is the biggest driver of water supply in the west and is one the most uncertain elements in 
future climate projections. While all downscaling methods project increases in precipitation across most 
of the domain, the spatial patterns are markedly different between dynamical approaches (ICAR and 
WRF) and statistical approaches (BCSD and LOCA).  BCSD and LOCA project roughly the same percentage 
increase on mountain tops as in valleys.  In contrast, ICAR and the WRF sensitivity test project small 
percent increases on mountain tops, and even decreases near the crest and in the lee of mountains 
(Figure 2).  This spatial distribution can be explained by the following physical processes, 1) changes from 
snow to rain result in less efficient extraction of moisture over mountains due to the time it takes rain to 
form relative to snow (Eidhammer et al., 2018), 2) less precipitation immediately downwind of the 
mountain crest due to the faster fall speed of rain vs snow, and 3) more precipitation further downwind 
of the mountains as more moisture makes it past the mountain range (Siler et al., 2016, Mass et al., 
2022).  
 
 
 
 

  

 Figure 2. The mean 
end-of-century 
change in mean 
precipitation during 
the cool season (Sept-
May) in four different 
downscaled datasets.  
Methods using a high-
resolution 
atmospheric model 
(ICAR and WRF: 
bottom) predict less 
change on mountain 
tops and more in 
interior inter-
mountain domains.  

Key Finding: Dynamical downscaling approaches (ICAR and WRF) project less of an 
increase in precipitation on mountain tops than statistical methods (LOCA and BCSD) 
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Source: Rain in the Wrangell Mountains, Alaska. Public domain photo by National Parks Service Neal Herbert 
 
TEMPERATURE CHANGES 
Temperature is critical for water resource estimates of evaporative losses, snow melt timing, and water 
quality thermal effects. All methods project increases in temperature, but there are differences in the 
spatial pattern and the change in minimum and maximum temperatures. The dynamical methods project 
larger changes in daily minimum temperatures (Figure 3) and smaller changes than the statistical 
methods in the daily maximum temperatures (Figure 4). Theory and historical observations agree that 
minimum temperatures should increase faster than maximum temperatures (Gil-Alana, 2018). This 
occurs because in a warmer world, there is little change in the solar radiation that drives mid-day 
maximum temperatures, but the longwave radiation that plays an important role in controlling minimum 
temperatures should increase because of increases in greenhouse gases and air temperatures.  
 
 

 
 
ICAR projects smaller changes in temperature along the west coast than other methods do, and both 
ICAR and WRF project larger increases in temperature in the interior mountain ranges, where the snow 
albedo feedback effect is expected to amplify warming.  
 

Key finding: LOCA and BCSD project 
a smaller change in daily minimum 
temperatures than daily maximum 
temperatures, in contrast to ICAR, 
WRF, and recent historical trends 

Figure 3. Projected changes in 
daily minimum temperature in 
statistically downscaled (top) 
and dynamically downscaled 
(bottom) data. 
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CONCLUSION 

Dynamically based and statistically based downscaling methods project similar large-scale patterns of 
changes in precipitation and temperature; however, the smaller scale variability exhibits significant 
differences. WRF sensitivity experiments, ICAR direct downscaling, and theory agree that mountain tops 
should see less of a percent increase in precipitation, and that the lee side of mountain ranges may see 
decreases in precipitation, and that the region downwind from mountain ranges should have larger 
precent increases in precipitation. Statistical downscaling methods (LOCA and BCSD) both predict 
smoother spatial patterns of cool season precipitation changes, reflecting the GCMs’ change signal. 
Similarly, dynamical methods and theory agree that daily minimum temperatures should increase faster 
than daily maximum temperatures, while statistical downscaling methods (BCSD and LOCA) predict the 
opposite.  

Dynamically downscaled climate change projections better represent physical processes and agree with 
observed and theoretically expected patterns of change. Climate change projections are a useful tool for 
water managers to analyze and plan for future water supplies, yet it is vital to understand that different 
downscaling methods introduce unique changes to the climate signal and the hydrologic implications 
from these differences need to be considered. 

Figure 4. Projected 
changes in daily 
maximum 
temperature in 
statistically 
downscaled (top) 
and dynamically 
downscaled 
(bottom) data. 
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