Water Utility Climate Adaptation and Resilience Planning: Some Guiding Principles

Joel B. Smith, Abt Associates
Overview

• Review the challenge of climate adaptation
• Offer some basic principles for adaptation
• Discuss methods for assessing adaptation options
• Address non-climate variables of concern
The Challenge of Adaptation to Climate Change

• We cannot adapt to a specific forecast of future climate
 • At best we know the direction of change of key variables
 • Some key aspects are uncertain

• Challenge is how to make decisions about investments and other decisions with long lifetimes in light of the uncertainties?

• This situation is not unique to climate change adaptation

• There is a path forward!
One Strategy – Wait for Better Information

• The science is unlikely to improve dramatically
 • Even after 30 years, some fundamental uncertainties such as climate sensitivity remain

• Decisions which can be affected by climate change, such as infrastructure and development, still have to be made
 • Either they incorporate climate change considerations or they do not

• Sensible decisions can be made in light of uncertainty
Two Guiding Principles for Adaptation

- Make decisions that work or function over a wide range of possible conditions; what is desired is:
 - Flexibility
 - Robustness
 - Resilience

- Consider Economics
 - Basically, benefits should exceed costs
 - Complicated when benefits (avoided impacts) may not happen or be much larger decades into the future
 - Discounting – do not spend a lot now to avoid risks many years from now
Define Our Terms

• Flexibility
 • The adaptation can accommodate different conditions by adjusting

• Robustness
 • The adaptation can withstand widely varying conditions

• Resilience
 • Classic definition concerns capacity to recover from shocks
 • In context of climate change has been used to also include withstanding shocks

• The terms are often used interchangeably in the climate change context
Adaptation Examples that Satisfy These Principles

• Incremental investments
 • Low cost adjustments to infrastructure
 • Can buy additional protection now and into the future

• Maintain options
 • Buy land on which can build infrastructure in the future

• Diverse portfolio of options (for example, supply)

• Use resilient or flexible management systems
 • Water markets are responsive to changing conditions
How Do We Assess Adaptation Options?

Two basic approaches:

1. Traditional assessment approaches
 • Often used to help identify an optimal solution

2. Deep Uncertainty approaches
 • Recognize “deep uncertainty” is part of problem and try to identify adaptations that can work across an array of possible outcomes
Traditional Assessment Approaches

1. Benefit-Cost Analysis (BCA) - King of traditional approaches
 • Express all benefits and costs in common unit, typically money
 • Seek to maximize
 • Net Benefits
 • Benefit cost ratio

2. Cost-effectiveness
 • Seek the least costly way to achieve a common outcome

3. Multi-criteria assessment
 • It is typically applied where different metrics are used

4. Triple Bottom Line (TBL) splits out financial, social, and environmental benefits
 • TBL can be used in the above approaches

Traditional approaches work best when uncertainties are well-characterized
 • Can also be applied when they are not; for example, for individual scenarios
Challenge of Applying BCA to Climate Change

- Probabilities of outcomes are not known
 - There are no reliable probabilities on GHG emissions
 - Challenging with regional climate change
- Timing of impacts
 - How to assess risks to life and limb over generations
 - Property is more straightforward but even that has challenges

<table>
<thead>
<tr>
<th>Cost to adapt</th>
<th>Adaptation Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$</td>
<td>$$$$$$$</td>
</tr>
<tr>
<td>$$$$$$$</td>
<td>$$</td>
</tr>
<tr>
<td>$$$</td>
<td>$$</td>
</tr>
</tbody>
</table>

10
Cost-Effectiveness

• Compare relative cost of achieving same or similar objectives
• Key is that objective must have same quantifiable value(s)
• Examples:
 • $ per life saved
 • $ per Disability Life Year (DALY)
 • $ per unit of water supply
Multi-Criteria Assessment: NREL Example

Inability to Continue Reliance on Evaporative Cooling and Chillers, Which Depend on Water

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Evaluation criteria and score</th>
<th>Recommended approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create and implement a climate monitoring</td>
<td>Create and implement a system to monitor and communicate both indoor and</td>
<td>Fair</td>
<td>Do now</td>
</tr>
<tr>
<td>and communication system</td>
<td>outdoor climate variables, including building temperatures so staff can</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dress accordingly and lightning and outdoor temperature predictions for</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>outdoor safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add conventional backup air conditioning</td>
<td>Add conventional coolers and backup air conditioners for use during periods</td>
<td>Good</td>
<td>Continue evaluating</td>
</tr>
<tr>
<td></td>
<td>of prolonged or intense humidity or heat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrofit high-performance computer</td>
<td>Retrofit the high-performance computer so that it is not cooled by chillers</td>
<td>Fair</td>
<td>Remove from consideration</td>
</tr>
</tbody>
</table>
Deep Uncertainty Philosophies

• Philosophies
 • Risk Management
 • Adaptive Management

• Types of Adaptation
 • No Regrets
 • Low Regrets
 • Incremental Adaptation
Consider likelihood and consequence of outcomes
Philosophy: Adaptive Management

- Recognizes that we can make adjustments as conditions change
- Design systems/decisions so future conditions can be incorporated
 - Option to use land for investment in future such as a reservoir
- Examples:
 - Thames River barrier to protect London from storm surges over rest of century
 - MWD organized near-term investments in local supplies expecting some will need to expand and some be contracted as demand, regulations, climate, another factors change
- ASCE recommends adaptive management approach be applied
Adaptive Management for Uncertain Magnitudes of SLR in the Thames River

- Sea level rise scenarios:
 - Maximum water level rise:
 - 0 m
 - 1 m
 - 2 m
 - 3 m
 - 4 m

- Defra and upper part of new TE2100 likely range:
 - Improve Thames Barrier and raise downstream defenses
 - Over-rotate Thames Barrier and restore interim defenses
 - Flood storage, improve Thames Barrier, raise upstream and downstream defenses

- Top of new H++ range:
 - Flood storage, over-rotate Thames Barrier, raise upstream and downstream defenses
 - Flood storage, restore interim defenses
 - New barrier, retain Thames Barrier, raise defenses
 - New barrier, raise defenses
 - New barrier

- Previous extreme used in TE2100:

- Link to alternative measures:
 - Possible future adaptation route (or pathway), allowing for different degrees of sea level rise through time
 - Predicted maximum water level under each scenario

- Measures for managing flood risk indicating effective range against
Adaptive Management Over Time for Flood Risks in Rotterdam
Types of Adaptation: No Regrets and Low Regrets

• No Regrets
 • Adaptation can be justified without consideration of climate change
 • Greater benefits are expected with climate change

• Low Regrets
 • Done to incorporate risks of climate change
 • Typically small investment if only considering long term benefits
 • “Low regret” on cost side if invested too much
 • Might have higher regret if invested too little
Types of Adaptation: Incremental Adaptation

• Incrementally increase size of investment or make other incremental change to adapt to expected climate change

• Makes most sense when cost of incremental change is low

• Appropriate for decisions with long-life time

• Can be inappropriate if fundamental change is needed
Decision Support Tools

• Emphasis is on “Support”
 • Tools do not tell you the “right” decision
 • But can help organize complex information and get insight on adaptation options

• Advantage is they can serve as a mechanism to bring stakeholders together to work through understanding risks and options so as to:
 • Reduce conflict
 • Identify key uncertainties
 • Suggest approaches or strategies that can work
Other Key Factors Will Change And Should be Considered

• Population
• Income
• Technology
• Preferences/Culture

Key point is not to project these but understand how change in these and other factors can change vulnerability of a system to climate
How Precise Do We Need to Be in Our Projections?

Adaptations Often Incorporate Ranges or are Incremental

• Culverts can accommodate a wide range of flow and come in incremental diameters from 6” to 1’

• Decisions on sea level rise and flooding such as freeboard are often made in 1’ increments
Key Takeaways

• The challenge of anticipating climate change is making decisions in light of uncertainty
 • Note: that is the challenge of anticipating any future change

• Uncertainty approaches are better suited to identify and assess options for anticipation of climate change
 • Adaptive management, risk management
 • No regrets, low regrets
 • Incremental, modular (scalable), diversification

• Decision support can help in analyzing options
 • Traditional assessment approaches (e.g., BCA) can still be useful

• Other factors besides climate are also changing and can be relevant