

Robust Decision Making in Metropolitan's IRP

Brandon Goshi Metropolitan Water District

December 5, 2018

Overview

- Metropolitan and its planning scope
- Review of uncertainty planning for MWD
- Metropolitan's Robust Decision Making Framework
- Key findings from 2012 RDM analysis
- Re-tooling RDM with the 2015 IRP Update

Metropolitan Water District

The Retail/Wholesale Water Supply Relationship Water

Supplies

Metropolitan (Wholesale)

Water **Supplies**

SDCWA (Wholesale)

City of SD (Retail)

Sources of Water for Southern California

Metropolitan's Integrated Water Resources Strategy (IRP)

- Invest in a diversified supply mix
 - Stabilize imported supplies
 - Meet new demands with local resources and conservation

Conservation

Recycling

Imported Supplies

Transfers/ Exchanges

Storage

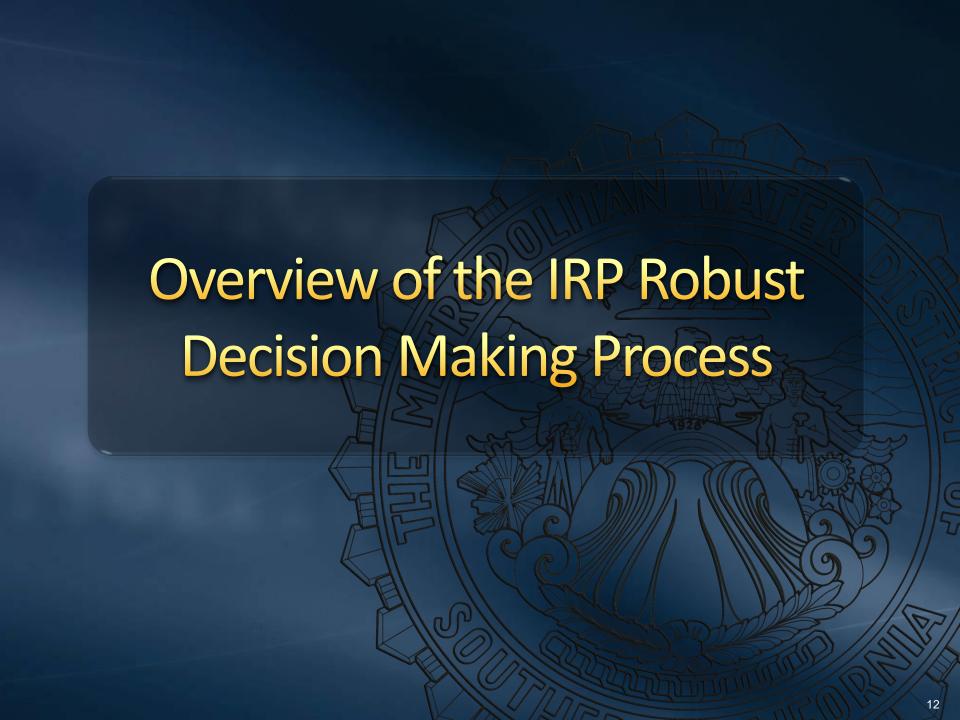
Groundwater Recovery

Recognizing Types of Uncertainty

There are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns — the ones we don't know we don't know.

~Donald Rumsfeld

Known Knowns


- Official Demographic projections
- Project parameters (online dates, capacity, yield)
- Historical weather outcomes
- Other

Known Unknowns

- Existing project loss/ yield reductions
- Changes in project parameters
- Regulatory changes
- Shifts in demographics and growth
- Economic boom and bust
- Climate change

Unknown Unknowns

I don't know what these are and neither do you, because that's the whole point of unknown unknowns!

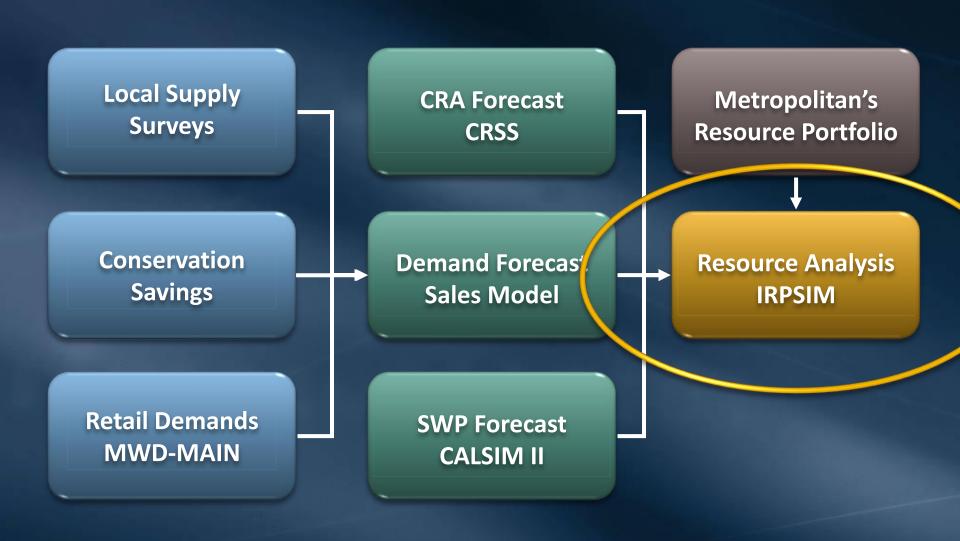
IRP Adaptive Management Strategy

3 Components for Adapting to Change

Core Resource Strategy

Supply Buffer

Foundational Actions


Reliability Under Planned Conditions (eg. Historical weather)

Adapt to Shorter-Term Uncertainty (Outside of planned conditions)

Preparation for Long-Term Change (Climate Change, Supply

Loss, Demands)

Metropolitan's Planning Models

IRPSIM Summary

- Inputs
 - 30 Supply Sources and Programs
 - 10 Demand Categories
 - 20 Storage and Transfer Programs
 - 1000+ Supporting Variables
 - 24 Operational Stages
- Outputs
 - 50 Year Simulation
 - 83 Hydrologic Traces

50 Years x 83 Traces x 1000 Variables x 24 Stages ≈ 100 Million Calculations

Simulation Run Time... 8 seconds!

Incorporating Uncertainty Using an Existing Model Framework

Local Supplies

- -Climate
 - -Yields
- -Timing

Conservation

- -Yields
- -Timing

Retail Demands
-Demographics
-Climate

CARS

IRPSIM
Resource
Analysis

CRA Forecast -Climate

SWP Forecast

- -Climate
- -Delta Fix
 - -Timing

Metropolitan's
Resource
Portfolio

Defining Future Uncertainties The Experimental Design

Factor	Range of Uncertainty
Demographic Changes	4 Scenarios: Balanced Growth, Baseline Growth, Periurban Growth, High Growth
Climate Conditions	12 Climate Scenarios: 6 GCMs x 2 Emissions Scenarios used by IPCC
Bay-Delta Conditions	3 Scenarios: No Delta Fix, Partial Delta Fix, Full Delta Fix
Local Resource Yields	±20% Variation in Groundwater, Recycling, Groundwater Recovery, Conservation
Project Implementation Timing	Delays: 0-10 years Desalination & Recycling, 0-20 years Conservation, 0-30 years Delta Fix

RDM Analytical Approach

- Analyzed +6,900 combinations of uncertainty
- Used "scenario discovery" to identify where IRP Resource Mix failed:
 - Net Balance
 - Total Storage
- Used statistical methods to determined common areas of vulnerability

Analytical Steps

- 1. Configure IRPSIM with "Core Resources Strategy and Buffer" of the IRP
- 2. Evaluate "Core Resources Strategy and Buffer" with Experimental Design
- 3. Identify when the IRP fails based on specified markers/thresholds
- 4. Identify factors that led to failure
- 5. Develop "signposts" for monitoring data associated with uncertainty factors

Summary of RDM Conclusions

- The IRP approach is vulnerable when two or more uncertainties turn out unfavorably
 - Example: High inland growth combined with an increasingly hot/dry climate
- Key uncertainties to "signpost" and monitor
 - Future Delta conditions
 - Demographic trends
 - Groundwater yields
 - Climate Conditions

Signposts for Monitoring

Demographics

- Growth Rates
- Areas of Growth
- Housing Type Trends
- Density Trends
- Employment

Local Supplies

- GW Adjudications
- Water Quality Impacts
- Regulations
- New Projects/Timing
- Reduced Yields

Bay-Delta

- Environmental Impacts
- Ecosystem Restoration
- New and Improved Facilities
- Operations

Climate Change

- Precipitation Trends
- Temperature Trends
- Global Modeling results
- Downscaling improvement

IRP Adaptive Plan Approach

Time

Re-Defining Future Uncertainties Factors and Ranges

Factor	Range of Uncertainty
Demographic Changes	4 New Scenarios: Baseline, Balanced Growth, Peri-Urban Growth, High Growth
Climate Conditions	12 Climate Scenarios: Used to inform a range of <u>Delta Method</u> climate scenarios and map results
Bay-Delta Conditions	2 Scenarios: No California WaterFix, Full California WaterFix
Local Resource Yields	±20% Variation in Groundwater, Recycling, Groundwater Recovery, Conservation
Project Implementation Timing	Delays: 0-10 years Desalination & Recycling, 0-20 years Conservation, 0-30 years Delta Fix

Summary of RDM for Metropolitan

- Approach developed with RAND
- Supports adaptive decision-making approach
- Incorporates data, modeling, and analytics
- Evaluates system against a wide range of uncertain future conditions
- Identifies factors leading to when and why scenarios fail
- Informs signposts and monitoring criteria for adaptive management and practicable implementation

