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INTRODUCTION 

 

Rainfall and temperature variability at multiple time and space scales profoundly affect both 

water demand fluctuations and supply availability. In support of effective water resource 

management and efficient groundwater/surface water source rotation that enhances system 

reliability, Tampa Bay Water is seeking to develop more robust climate forecasts and simulation 

techniques.  In 2007, Tampa Bay Water initiated a project with University of Florida to assess 

the usefulness of various climate indices, climate forecasts and climate model predictions as 

input into the agency’s hydrologic models.  

Tampa Bay Water uses a variety of hydrologic and statistical models as part of their effort at 

risk-based management of short- and intermediate-term operations and long-range planning. The 

operational models include the Short Term Demand Forecast Model (STDF), surface water 

artificial neural network models (SWANN), and Groundwater ANN Models (GWANN). The 

planning models include the Long Term Demand Forecasting System (LTDFS), the Flow 

Modeling System (FMS), and the Integrated Hydrologic Model/ Integrated Northern Tampa Bay 

Application (IHM/INTB). These models relate inputs, such as rainfall, temperature, pumping or 

diversions, to outputs such as water levels, storage levels or flows. Rainfall is the most important 

input for all of these models. For deterministic hydrologic models (e.g. IHM/INTB) rainfall is 

needed as a highly spatially and temporally distributed product. On the other hand statistical 

models (e.g. GWANN and FMS) typically require a spatially or temporally aggregated rainfall 

forecasts, or utilize historic rainfall recorded at specific locations and times. 

  



 

 

2 

PHASE I:  APRIL 2007- DECEMBER 2011 

Task 1:  Assess benefits of incorporating rainfall forecasts into Tampa Bay Water’s 

Ground Water Artificial Neural Network (GWANN) set of models  

Results: The GWANN models currently generate 1-week to 4-week forecasts of groundwater 

levels at 58 monitoring wells in the Tampa Bay region using recent observed rainfall, pumping 

and groundwater levels, and a rainfall forecast that assumes that the same rainfall observed in the 

week prior to the forecast will occur over the next 4 weeks.  Results of this effort showed that 

overall the GWANN models exhibited low sensitivity to rainfall forecast method.  Based on the 

Root mean square error statistic (RMSE) averaged over all 58 monitoring wells, model results 

for 2006 and 2007 indicated that using a perfect rainfall forecast, using the long-term median 

weekly rainfall as the forecast for each of the next 4 weeks, and using the long-term median 4-

week rainfall split equally over the next 4 weeks, all modestly reduced model prediction error 

over using the current method. However, the Theils’ U statistic averaged over all 58 monitoring 

wells showed that the naïve model (using last week’s groundwater level as the forecast for future 

groundwater levels) performed better than GWANN for predicting groundwater levels in both 

2006 and 2007 regardless of which rainfall forecast was used. These investigations indicated 

that, in its present form, improved rainfall forecasts will not significantly improve the GWANN 

model performance, regardless of forecast method.  Structural changes to the GWANN models, 

such as retraining the neural networks using forecast rainfall or other forecast climate indices; or 

extending the forecast/planning horizon beyond four weeks may be necessary before improved 

rainfall forecasts can reduce model prediction errors.   

Complete details on the results of this task were provided in the Interim Report submitted to 

Tampa Bay Water in October 2008.   

Task 2: Assess benefits of incorporating rainfall forecasts into Tampa Bay Water’s Surface 

water flow Modeling System (FMS). 

Results: The FMS model currently generates 1-month to 12-month forecasts of surface water 

flows at 5 locations using recent surface water flow levels, and an internal rainfall forecast based 

on a historic rainfall patterns at the Plant City rainfall station.  Initial FMS model evaluations 

compared the model performance using its existing rainfall forecast to using ‘perfect’ monthly 

rainfall as the forecast.  The 90% confidence interval band was reduced by 14% (Bell Shoals) to 

48% (De-adjusted S160) when using the perfect rainfall forecast in 2006, and 19% (Bell Shoals) 

to 64% (Hillsborough River Dam) when using the perfect rainfall forecast in 2007. These results 

indicated a potential for improving model performance if better rainfall forecasts can be 

incorporated into the FMS model system.   

Complete details on the results of this task were provided in the Interim Report submitted to 

Tampa Bay Water in October 2008.  This effort also resulted in the following peer reviewed 

publication: 
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Hwang, S., Martinez, C.J., and T. Asefa. 2012. Assessing the benefits of incorporating rainfall 

forecasts into monthly flow forecast system of Tampa Bay Water, Florida. Journal of the Korean 

Society of Agricultural Engineers 54(4): 127-135. doi: 10.5389/KSAE.2012.54.4.127 

 

Task 3: Generate monthly realizations of climate indices from historical data and provide 

recommendations for incorporating into Tampa Bay Water models.  

Results: The goal of this task was to identify climate patterns related to monthly and seasonal 

rainfall, streamflow, and demand in the Tampa Bay region and to recommend climate indices 

that could be used to improve forecasts of these variables. As part of this work a review of online 

climate analysis tools was conducted to evaluate their suitability for use in the Tampa Bay 

Region.   

 

Lagged linear correlation maps were produced between seasonal mean rainfall, streamflow, and 

demand with seasonal means of each of three gridded climate variables: sea surface 

temperatures, sea level pressures, and 500mb geopotential heights. Lagged correlation maps 

were produced for regional means/totals and for individual stations in order to examine the 

variability of results. Lagged composite anomaly maps of the gridded climate variables were 

then created for extreme seasonal hydrologic events (e.g. 10th and 90th percentiles). Based on 

the patterns found by lagged correlation and composite analyses, indices of each climate variable 

were identified for further analysis. Each index was evaluated using lagged Pearson’s product 

moment correlation and Spearman’s rank correlation of monthly and seasonal values. 

 

The most significant results, in terms of correlation magnitude and persistence, were found with 

indices of El Niño - Southern Oscillation (ENSO). The Niño 3 and Niño 3.4 sea surface 

temperature indices and the station-based and reanalysis-based Southern Oscillation Indices (SOI 

and eqSOI, respectively) were found to show significant and coherent correlations at lead-times 

up to nine months. The variability of these relationships during different phases of the Atlantic 

Multidecadal Oscillation (AMO) was then examined. Significant differences were found 

between different time periods of the AMO, however no clear pattern between phases was found. 

It is recommended that one of the identified ENSO indices be employed when developing 

climate-based forecasts. However, it is also recommended that the strength and pattern of the 

relationship be verified according to the time-period of historical data used to develop forecasts 

or train models. 

 

Complete details on the results of this task were provided in the Interim Report submitted to 

Tampa Bay Water in August 2009.   

 

 

 

 

http://dx.doi.org/10.5389/KSAE.2012.54.4.127
http://dx.doi.org/10.5389/KSAE.2012.54.4.127
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Task 4: Evaluate the ability of the mesoscale regional climate model MM5 to predict 

precipitation over the Tampa Bay region 

 

Results: This task quantitatively evaluated the ability of the fifth-generation Pennsylvania State 

University–National Center for Atmospheric Research Mesoscale Model (MM5) to reproduce 

observed spatiotemporal variability of precipitation in the Tampa Bay region over the 1986–2008 

period.  The National Centers for Environmental Prediction–National Center for Atmospheric 

Research (NCEP–NCAR) reanalysis data were used as initial and boundary conditions for MM5. 

Use of the NCEP–NCAR reanalysis data for boundary conditions is advantageous because it 

removes the confounding factors of potential biases related to retrospective Global Climate 

Model (GCM) process simulation, and thus provides a more objective measure of the skill of the 

MM5 downscaling accuracy.   
 

Raw MM5 model results were positively biased; therefore, the raw model precipitation outputs 

were bias corrected at 53 long-term precipitation stations in the region using the cumulative 

distribution function (CDF) mapping approach. CDF mapping effectively removed the bias in 

the mean daily, monthly, and annual precipitation totals and improved the RMSE of these 

rainfall totals. Observed daily precipitation transition probabilities were also well predicted by 

the bias-corrected MM5 results. Nevertheless, significant error remained in predicting specific 

daily, monthly, and annual total time series. After bias correction, MM5 successfully reproduced 

seasonal geostatistical precipitation patterns, with higher spatial variance of daily precipitation in 

the wet season and lower spatial variance of daily precipitation in the dry season. Bias-corrected 

daily precipitation fields were kriged over the study area to produce spatiotemporally distributed 

precipitation fields over the dense grids needed to drive the IHM/INTB model. Cross validation 

at the 53 long-term precipitation gauges showed that kriging reproduced observed rainfall with 

average RMSEs lower than the RMSEs of individually bias-corrected point predictions. Results 

indicate that although significant error remains in predicting actual daily precipitation at rain 

gauges, kriging the bias-corrected MM5 predictions over a hydrologic model grid produces 

distributed precipitation fields with sufficient realism in the daily, seasonal, and interannual 

patterns to be useful for multidecadal water resource planning in the Tampa Bay region. 

 

Complete details on the results of this task can be found in the following peer-reviewed 

publication: 

 

Hwang, Syewoon, Wendy Graham, José L. Hernández, Chris Martinez, James W. Jones, Alison 

Adams, 2011: Quantitative Spatiotemporal Evaluation of Dynamically Downscaled MM5 

Precipitation Predictions over the Tampa Bay Region, Florida. J. Hydrometeor, 12, 1447–1464. 

doi: http://dx.doi.org/10.1175/2011JHM1309.1  

 

 

 



 

 

5 

Task 5: Evaluate the ability of statistically downscaled GCM retrospective simulations to 

predict daily precipitation over the Tampa Bay region 

 

Results: There are a number of statistical techniques that downscale coarse climate information 

from global circulation models (GCM). However, many of them do not reproduce the small-

scale spatial variability of precipitation exhibited by the observed meteorological data which can 

be an important factor for predicting hydrologic response to climatic forcing in the Tampa Bay 

region. In this task a new downscaling technique (bias-correction and stochastic analog method, 

BCSA) was developed to produce stochastic realizations of bias-corrected daily GCM 

precipitation fields that preserve the spatial autocorrelation structure of observed daily 

precipitation sequences. This approach was designed to reproduce observed spatial and temporal 

variability as well as mean climatology.  

 

The BCSA method was used to downscale 4 retrospective GCM precipitation predictions (1961 

to 1999) over the state of Florida and compared the skill of the method to the results obtained 

with the commonly used bias-correction and spatial disaggregation (BCSD) approach, bias-

correction and constructed analog (BCCA) method, and a modified version of BCSD which 

reverses the order of spatial disaggregation and bias-correction (SDBC). Spatial and temporal 

statistics, transition probabilities, wet/dry spell lengths, spatial correlation indices, and 

variograms for wet (June through September) and dry (October through May) seasons were 

calculated for each method. 

 

Results showed that (1) BCCA underestimated mean climatology of daily precipitation while the 

BCSD, SDBC and BCSA methods accurately reproduced it, (2) the BCSD and BCCA methods 

underestimated temporal variability because of the interpolation and regression schemes used for 

downscaling and thus, did not reproduce daily precipitation standard deviations, transition 

probabilities or wet/dry spell lengths as well as the SDBC and BCSA methods, and (3) the 

BCSD, BCCA and SDBC methods under-estimated spatial variability in precipitation resulting 

in under-prediction of spatial variance and over-prediction of spatial correlation, whereas the 

new stochastic technique (BCSA) accurately reproduced observed spatial statistics for both the 

wet and dry seasons. This task underscored the need to carefully select a downscaling method 

that reproduces all precipitation characteristics important for the hydrologic system under 

consideration if local hydrologic impacts of climate variability and change are going to be 

accurately predicted. For the Tampa Bay Water region, where reproducing small-scale 

spatiotemporal precipitation variability is important, the BCSA method is recommended for use 

over the BCSD, BCCA, or SDBC methods.  

 

Complete details on the results of this task can be found in the following peer-reviewed 

publication: 
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Hwang, S., and W. Graham, Development and comparative evaluation of a stochastic analog 

method to downscale daily GCM precipitation, Hydrol. Earth Syst. Sci. Discuss., 10, 2141–2181, 

doi:10.5194/hessd-10-2141-2013. 

 

 

 

Task 6: Evaluate the ability of statistically downscaled GCM retrospective simulations to 

simulate retrospective streamflow when used to drive the IHM-INTB model  

   

Results: This task applied three statistical downscaling methods: 1) bias-correction and spatial 

disaggregation at daily time scale (BCSD_daily), 2) a modified version of BCSD which reverses 

the order of spatial disaggregation and bias-correction (SDBC), and 3) the bias correction and 

stochastic analog method (BCSA) developed in Task 5) above to downscale retrospective 

General Circulation Model daily precipitation outputs to the sub-basin scale for west-central 

Florida. Each downscaled climate input dataset was then used in the IHM-INTB model to 

examine differences in ability to simulate retrospective streamflow characteristics.  

 

Results showed that the BCSD_daily method consistently underestimated mean streamflow 

because the highly spatially-correlated small precipitation events produced by this method 

resulted in overestimation of evapotranspiration. Highly spatially-correlated large precipitation 

events produced by the SDBC method resulted in overestimation of the standard deviation of wet 

season daily streamflow and the magnitude/frequency of high streamflow events. BCSA showed 

better performance than the other methods in reproducing spatiotemporal statistics of daily 

precipitation and streamflow. 

 

This task demonstrated that differences in statistical downscaling techniques propagate into 

significant differences in streamflow predictions, and underscored the need to carefully select a 

downscaling method that reproduces precipitation characteristics important for the hydrologic 

system under consideration. 

 

Complete details on the results of this task can be found in the following publication that has 

been submitted for peer review: 

 

Hwang, S., and W. Graham, Hydrologic importance of spatiotemporal variability in statistically 

downscaled daily GCM precipitation predictions, Journal of the American Water Resources 

Association, in review, 2013. 

  

http://www.hydrol-earth-syst-sci-discuss.net/10/2141/2013/hessd-10-2141-2013-print.pdf
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PHASE II – JANUARY 2012-DECMBER 2013 

Task 1:  Assess the utility of dynamically-downscaled regional reanalysis data to predict 

streamflow in west central Florida using IHM-INTB 

 

Results: This task evaluated the reliability of using dynamically-downscaled, bias-corrected 

reanalysis data (i.e. regional reanalysis data) to predict streamflow in the Tampa Bay Region 

using the IHM-INTB model.  Four different sets of global reanalysis data (NCEP/NCAR-R1, 

NCEP-DOE-R2, ERA40, and 20CR) that were previously downscaled using two Regional 

Climate Models (RCM) (MM5 and the Regional Spectral Model, RSM) were obtained, bias-

corrected on a daily basis using the CDF-mapping approach, and used to drive the IHM-INTB 

model. 

All raw dynamically-downscaled reanalysis datasets accurately estimated the annual cycle of 

daily maximum and minimum temperature, except the NCEP/NCAR R1+MM5 data which 

consistently underestimated daily maximum temperature. All raw regional reanalysis 

precipitation data significantly overestimated precipitation, particularly for the dry season.  Bias-

correction using the CDF-mapping approach effectively removed biases in the temporal mean 

and standard deviation of both the daily precipitation and temperature predictions.  Biases in the 

mean monthly and mean annual precipitation totals were removed by CDF-mapping on a daily 

basis, but the standard deviation of the monthly and annual precipitation totals were not 

accurately reproduced.  Furthermore inaccuracies in actual daily precipitation time series 

aggregated into monthly and annual rainfall total time series that showed significant and 

temporally persistent errors.   

Precipitation timing errors produced by bias-corrected regional reanalysis data were propagated 

and enhanced by non-linear streamflow generation, groundwater flow and storage processes in 

the hydrologic model and produced significant errors in both actual and mean daily, monthly and 

annual streamflow and groundwater level predictions.  In general it was determined that the 

accuracy of the streamflow predictions produced by the bias-corrected downscaled reanalysis 

data was not sufficient for short term (monthly to annual) decision making, but may be 

satisfactory for long term (decadeal) planning purposes. Results of this task indicated that 

similarly bias-corrected dynamically downscaled retrospective and future GCM projections 

should be suitable for assessing potential hydrologic impacts of future climate change in the 

Tampa Bay region. 

 

Complete details on the results of this task can be found in the following peer reviewed 

publications: 

 

Hwang, S., W. Graham, A. Adams, and J. Guerink, Assessment of the utility of dynamically-

downscaled regional reanalysis data to predict streamflow in west central Florida using an 
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integrated hydrologic model, Regional Environmental Change, doi: 10.1007/s10113-013-0406-

x, 2013. 

Hwang, S., W. Graham, J. Guerink, and A. Adams, Hydrologic implications of errors in bias-

corrected regional reanalysis data for west-central Florida, Journal of Hydrology, in review, 

2013. 

Task 2: Assess potential regional climate change impact on streamflow over Tampa Bay 

region using retrospective predictions and future projections from the FSU COAPS Land-

Atmosphere Regional Ensemble Climate Change Experiment for the Southeast United 

States at 10-km resolution (CLARREnCE10). 

The CLARREnCE10 dataset, http://floridaclimateinstitute.org/resources/data-sets/regional-

downscaling, includes retrospective (1969-2000) and future (2039-2070, A2 scenario) 

predictions from three GCMs that were dynamically downscaled to 10-km resolution using the 

FSU RSM (see Figure 1). The three GCMs selected by FSU for downscaling were the 

Community Climate System Model (CCSM), the Hadley Centre Coupled Model, version 3 

(HadCM3) and the Geophysical Fluid Dynamics Laboratory GCM (GFDL).  Emission scenarios 

were generated by the Intergovenmental Panel on Climate Change (IPCC) and are described in 

IPCC Special Reports on Emission Scenarios (IPCC 2000). Scenarios were developed that 

describe different storylines about possible future social, economic, technological and 

demographic developments. The emission scenarios have internally consistent relationships that 

were used to describe future pathways of greenhouse gas emissions. The A2 scenario describes a 

very heterogeneous world and represents “high future emissions".  Projected CO2 concentrations 

are used to estimate the effects on the earth’s radiative energy budget, and this is the key forcing 

input used in global climate model simulations of the future. 

 

Methods: The daily precipitation and temperature data for the retrospective predictions from 

each GCM were bias-corrected using a CDF mapping approach.  Three different methods for 

estimating the required CDFs were used (see Figure 2): 

1. Monthly CDFs were estimated using all daily data for each calendar month (total 12 

CDFs)   

2. Daily CDFs were estimated using a moving window of  ±15 days around the day to be 

bias-corrected (total 365 CDFs) 

3. Daily CDFs were estimated using a moving window of  ±30 days around the day to be 

bias-corrected (total 365 CDFs)  

 

To develop future scenarios two different methods were used: 

1. Direct Bias Correction method: The bias for a particular daily value of precipitation or 

temperature was assumed to be the same in the retrospective and future periods.  Thus for 

each daily future projection the bias-correction for the retrospective prediction with that 

same value was applied (see Figure 2).    

http://floridaclimateinstitute.org/resources/data-sets/regional-downscaling
http://floridaclimateinstitute.org/resources/data-sets/regional-downscaling
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2. Delta method: The differences between the monthly CDFs of raw retrospective and future 

CLAREnCE10 precipitation and temperature predictions at each percentile were used to 

adjust the observed monthly CDF to produce a future CDF. The future CDF was used to 

produce the future time series for each variable from the observed times series.  

 

The bias-corrected dynamically downscaled retrospective and future daily precipitation and 

temperature data were then used as inputs for the IHM-INTB model. All other parameters, 

forcing terms and initial boundary conditions for hydrologic simulation were identical to those 

used in the calibrated model. 

Temperature Results: 

Figure 3 compares the spatial distribution of  the observed and raw CLAREnCE10 daily 

minimum temperature (Tmin) over the Tampa Bay region for the thirty year retrospective and 

future time periods. Figure 4 compares the spatial distribution of  the observed and raw 

CLAREnCE10  retrospective and future mean daily maximum temperature (Tmax).   All 

retrospective downscaled GCMs reasonably reproduced the range of values for the observed 

mean Tmax and Tmin. Note that the bias-corrected results reproduce very similar spatial 

distributions of mean Tmax and Tmin to the observations because the bias-correction process 

maps raw CLAREnCE10 CDFs to observed CDFs on a grid-by-grid basis. The retrospective and 

future spatial distributions of daily mean Tmax and Tmin predictions were found to be very 

similar for a given GCM. This is due to the fact that the regional climate model uses the same 

physical schemes and geographic data (e.g., topography, land cover, etc.) for the retrospective 

and future simulations for each simulation but uses different boundary conditions from the 

appropriate GCM.   All downscaled GCM projections consistently estimated a 2-3
o
C increase in 

mean daily maximum and minimum temperatures over the study area for the future period 

(2039~2070) under the A2 emission scenario.  

Figure 5 compares the monthly mean Tmax and Tmin of the observed, raw and bias-corrected 

CLAREnCE10 data for the retrospective and future periods. This figure indicates that the annual 

cycle of observed mean Tmax and Tmin were accurately reproduced by all three GCMs, and that 

the relatively small biases were successfully removed by bias-correction. Figure 6 compares the 

predicted change in future monthly mean Tmax and Tmin for each GCM in the CLAREnCE10 

experiment. Raw CLAREnCE10 results predict that the average monthly increase of temperature 

will range from 1
o
C to 3

 o
C, and bias corrected results predict an average monthly increase of 

approximately 1
o
C to 3

 o
C. The predicted monthly changes for the raw results (Figure 6 left 

column) are the mean of monthly change factors used in the ‘delta method’. There is some 

variation among the different GCM results, with CCSM showing a different annual cycle of 

temperature change compared to the HadCM3 and GFDL results. In all cases the difference 

among bias-correction techniques was smaller than the difference among GCMs. 

Precipitation Results: 

Figure 7 compares the spatial distribution of the observed and raw CLAREnCE10 predicted 

daily precipitation over the Tampa Bay region for the thirty year retrospective and future time 

periods.  This figure shows significant differences in the spatial pattern of precipitation among 

GCMs, and significant differences between the raw retrospective GCMs and the observed data.  

In particular, the retrospective CCSM predictions significantly underestimate the observed mean 
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precipitation over the entire study area.   As with the temperature results, spatial patterns of 

retrospective and future mean precipitation were similar for each individual GCM.  However, 

unlike the temperature results the magnitude of precipitation change from the retrospective to 

future period varied among the GCMs. Precipitation was predicted to decrease for CCSM, 

remaining approximately equal for HadCM3, and increase for GFDL. 

Figure 8 shows the annual cycle of mean precipitation for the raw and bias-corrected 

CLAREnCE10 data for the retrospective and future periods. While the raw retrospective 

HadCM3 and GFDL results reproduce the seasonal cycle of precipitation fairly well, the raw 

retrospective CCSM results fail to reproduce the summer rainy season. Figure 9 compares the 

predicted change in future precipitation change (future-retrospective) for the three raw and bias-

corrected GCMs. Figure 9, left column are the monthly mean change factors used in ‘delta 

method’.  The bias-corrected CCSM predicts a decrease in precipitation for all months in the 

future. The bias-corrected HadCM3 shows a slight increase in precipitation in the winter months 

and a decrease in the summer months.  GFDL shows a significant decrease in July precipitation 

but increases in precipitation for most months of the year.  As with the temperature results, the 

differences among the GCMs were much greater than the differences among the bias-correction 

methods.  

Streamflow Results: 

Figure 10 compares the annual cycle of mean monthly streamflow predicted by the IHM-INTB 

model using bias-corrected retrospective predictions and future scenarios to both historic 

streamflow observations and the calibrated IHM-INTB model results for the Alafia and 

Hillsborough Rivers.  Differences between retrospective and future predicted mean monthly 

streamflow for each future scenario are plotted in Figure 11. These results show that predicted 

changes in the annual cycles of future streamflow for each GCM generally follow its predicted 

mean monthly precipitation change pattern (Figure 9).  The differences among the GCMs were 

much greater than the differences among the bias-correction methods, with CCSM predicting 

significantly lower mean monthly streamflow throughout the entire year, HadCM3 predicting a 

slight decrease in mean monthly streamflow in July and August, and GFDL predicting an 

increase in streamflow throughout most of the wet season (June through October). 

Figure 12 compares the 7Q10 High Flow estimated from streamflow simulations for the Alafia 

and Hillsborough Rivers using the downscaled and bias-corrected GCM results and the 

calibrated IHM-INTB model. Note that the 7Q10 High Flow is the annual 7-day maximum 

streamflow that is expected to occur on average in 1 year out of 10. These results show that the 

HadCM3 and GFDL predict a higher 7Q10 in the future for the Alafia River and a similar 7Q10 

in the future for the Hillsborough river, while the  CCSM predicts a  much lower 7Q10 in the 

future for both rivers.   

Figure 13 compares the retrospective and future mean annual evapotranspiration (ET), and the 

ET to precipitation ratio averaged over the study area, to the calibrated IHM-INTB model 

estimate. The future HadCM3 and GFDL results predict an increase of ET compared to the 

retrospective and calibrated results, with some variations among the bias-correction methods. In 

contrast, the CCSM results predict a significant decrease of mean annual ET and a significant 

increase in the ET to precipitation ratio due to the predicted decrease in precipitation for all 

months (Figure 7 through 9).  



 

 

11 

Results of this task show that although each of the GCMs predicts a consistent increase in future 

temperature, differences among future precipitation estimates propagate into significant 

differences in future streamflow predictions. In other words, the precipitation signal overwhelms 

the temperature signal in predicting hydrologic implications of projected future changes.  The 

high uncertainty in precipitation and thus streamflow estimates across the three GCMs 

considered here indicates that additional GCM predictions (with multiple greenhouse gas 

emission scenarios) must be examined before any actionable recommendations can be made.  

Due to the extreme time and computational expense associated with dynamic downscaling for 

GCMs, statistical downscaling of the larger set of GCMs using the BCSA method developed by 

Hwang and Graham (2013) is recommended.  

A manuscript is currently being prepared on this work for submission to a peer reviewed journal. 

 

 

Figure 1. The study area (Tampa Bay region, Florida) and grid configuration of the 

CLAREnCE10 data.  

Data grids 

Watershed boundaries 

Florida  
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Figure 2. Schematic representation of bias-correction procedures (i.e., CDF mapping) used in 

this study. The process is conducted for each monthly cdf, or daily moving window cdf 

independently.  
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Figure 3. Comparison of spatial distributions of the observed (upper left), raw retrospective 

(middle column) and future (right column) mean daily Tmin. Note that the scales are different 

for the retrospective and future simulations.    
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Figure 4. Comparison of spatial distributions of the observed (upper left), raw retrospective 

(middle column) and future (right column) mean daily Tmax. Note that the scales are different 

for the retrospective and future simulations.    
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Figure 5. Monthly mean of Tmax and Tmin of raw (upper row) and bias-corrected (bottom row) 

CLAREnCE10 data (i.e., CCSM (first column), HadCM3 (second column), and GFDL results 

(third column)) using monthly CDFs for retrospective (1969-2000) and future (2039-2070) 

periods. The variation among bias-corrected results using the other methods (i.e., daily moving 

window) were negligible and thus shown here.    
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Figure 6. Predicted change in future monthly mean Tmax (upper row) and Tmin (bottom row) 

for each GCM. Differences for the bias-corrected results using 3 different methods are presented 

in right column.   
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Figure 7. Comparison of spatial distributions of the observed (upper left), raw retrospective 

(middle column) and future (right column) mean daily preciptiation. Note that the scales are 

identical for the retrospective and future but different among the GCMs.    
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Figure 8. Daily mean precipitation of raw (upper row) and bias-corrected (bottom row) 

CLAREnCE10 data (i.e., CCSM (first column), HadCM3 (second column), and GFDL results 

(third column)) for retrospective (1969-2000) and future (2039-2070) periods. 
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Figure 9. Predicted change in future mean precipitation for each GCM. Differences for the bias-

corrected results using 3 different methods are presented in right column.   
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Simulations for retrospective periods 

  

Simulations for future periods 

   

  

   

Figure 10. Simulated daily mean streamflow using bias-corrected retrospective CLAREnCE10 

data (1969-2000, first row) and future data (2039-2070: CCSM (second row), HadCM3 (third 

row), and GFDL (fourth row)) for Alafia River (right column) and Hillsborough River (left 

column).  
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Figure 11. Predicted change in future streamflow simulations for CCSM (first row), HadCM3 

(second row), and GFDL (third row) for Alafia River (right column) and Hillsborough River (left 

column).  
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Figure 12. Comparison of the calibrated, retrospective and future 7Q10_HighFlow (top row) 

estimated from streamflow simulations for Alafia River and Hillsborough River using the 

downscaled GCM results.  
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Figure 13. Comparison of calibrated, retrospective and future mean annual evapotranspiration 

(right column) and evapotranspiration ratio to precipitation (left column), averaged over the 

study area.  
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